
Digital Assurance for Embedded Space Controllers
Bharat Bhrgava
bbshail@purdue.edu
Purdue University

USA

1 500 words Summary

Code

Requirements
NLP 

model
Formal requirements

Finite state machines

Formal Method 
Checking

Does System behaves as per its design specifications?

Static
Analyzer

Binary
Analyzer

GNN 
model

Vulnerability 
detector

AST

Does System have static Vulnerabilities?

Process 
monitoring

Score 
aggregator

Does System have runtime Vulnerabilities?

Figure 1: Diagram of proposed framework.

Our goal is to provide rigorous digital assurance for high-consequence
systems by designing a unified framework that integrates verifi-
cation, fault detection, monitoring, failure impact quantification,
and defensive mechanisms. This approach will provide a more effi-
cient, and interpretable assurance process, ensuring that systems
remain secure and functional even in under faulty conditions. We
also aim to introduce a quality metric that offers a holistic view of
attacks/faults and their impact. This will enable the designers to
make informed trade-off decisions.

Currently, digital assurance is addressed using separate tools
and techniques that focus on individual aspects of system reliabil-
ity. For instance, model checking is widely used to verify that a
system behaves as intended, but it is time-consuming and requires
specialized expertise. fault analysis tools like static analysis, binary
analysis, and penetration testing provide detailed reports of poten-
tial weaknesses, but these reports are sometimes less interpretable
and does not cover the holistic view of the system. Monitoring tech-
niques, such as anomaly detection, can identify ongoing attacks or
deviations from expected behavior, but they operate independently
from other assurance methods. Defensive mechanisms, like task
redundancy and address randomization, mitigate the impact of in-
telligent attacks but are not integrated into a unified system for
digital assurance. One of the key limitations of current practices is
the fragmentation of tools, making it difficult to connect insights
across different assurance processes. Additionally, existing impact
metrics for faults often focus only on the count of detected issues,
neglecting their severity and potential impact.

Our approach addresses these limitations by designing a mod-
ular pipeline that integrates verification, fault detection, monitor-
ing, and defensive mechanisms. This unified framework ensures
fine-grained analysis through a feedback loop that enhances overall
system assurance. For example, faults identified during analysis will
directly influence monitoring strategies, while real-time monitoring

data can update formal verification requirements to address emerg-
ing threats. We wil use Predictive state-based analytics to monitor
system behavior, searching for discrepancies in data and identify-
ing hidden patterns indicative of faults or attacks. We assume that
attackers are intelligent, and we will use Markov decision process
to model the behavior of the attack. Additionally, our framework
incorporates advanced AI techniques to enhance fault detection
and streamline the process. Graph Neural Networks (GNNs) will
improve the accuracy of fault detection by analyzing system code
and execution paths, while Natural Language Processing (NLP) will
translate informal system requirements into mathematical repre-
sentations for formal model checking. We will use interpretable
techniques in machine learning to summarize technical outputs
into accessible reports, making the results interpretable for non-
technical stakeholders.

A key innovation in our framework is the introduction of a new
metric for quantifying the impact of faults. Instead of counting
detected issues, we will measure the value of metric to each vulner-
ability based on its potential impact. These scores will be weighted
according to their impact, and faults across different security sub-
domains will be aggregated using a weighted geometric mean. This
approach ensures that critical faults have a substantial effect on
the overall metric, allowing stakeholders to prioritize issues more
effectively.

This unified framework will be particularly valuable for criti-
cal operations where system failures can have catastrophic conse-
quences, including space, defense, nuclear plant, etc. By providing
comprehensive and rigorous digital assurance, improving decision-
making, and making advanced assurance techniques accessible to
non-technical stakeholders, our framework will help reduce the risk
of system failures and cyberattacks. It will also improve reliability
and security of high-consequence systems.

Despite its potential, challenges remain in ensuring generaliz-
ability and scalability across diverse system architectures and threat
landscapes. To address this, we will employ distributed techniques
for parallel execution across system components, reducing bot-
tlenecks and enhancing resilience by preventing single points of
failure. This approach ensures the framework remains adaptable
across various high-consequence systems.

2 notes
2.1 What are you trying to do?
Weaim to provide comprehensive digital assurance for high-consequence
systems, ensuring that they function efficiently and as intended,
even in the face of potential vulnerabilities or external threats.
Digital assurance involves a holistic approach to verifying the re-
liability of the system, identifying vulnerabilities, monitoring live
performance, and implementing safeguards to prevent and mitigate



Conference’17, July 2017, Washington, DC, USA Bharat Bhrgava

attacks. Our objective is to develop a framework that not only inte-
grates these processes but also makes their results interpretable for
both technical and non-technical stakeholders. We also propose a
novel software quality metric that presents a holistic view of the
vulnerability and their severity for easier comparison of similar
softwares.

2.2 How is it done today, and what are the
limits of current practice?

Today, digital assurance is addressed through individual tools and
techniques that target specific aspects of the process:

• Verification (Model Checking): Model checking is widely
used to ensure that a system behaves as per its design speci-
fications. While effective, this method requires converting
the system code into finite-state models and verifying them
against requirements. Tools exist, but they demand signifi-
cant technical expertise to use and interpret, making them
inaccessible for non-expert users.

• Vulnerability Analysis: Static analysis, binary analysis, and
penetration testing are used to detect vulnerabilities. These
methods rely on state-of-the-art tools that produce highly
technical reports, detailing how vulnerabilities could be ex-
ploited. However, these reports are difficult to interpret for
decision-makers without technical backgrounds.

• Live Monitoring: Techniques like anomaly detection, sensor
data analysis, and model checking during runtime can detect
ongoing attacks or deviations from expected behavior. These
methods are effective but are not well-integrated into broader
assurance frameworks, and they often focus narrowly on
specific attack scenarios or system behaviors.

• Defensive Mechanisms: Techniques such as task redundancy,
address randomization, and checksum validation help miti-
gate the impact of attacks. However, these defenses operate
in isolation and are not part of a unified system for digital
assurance.

Numerous studies have been conducted on software grading
methodologies. Broadly, these approaches can be categorized into
static and dynamic metrics. Static metrics analyze the code without
execution, identifying vulnerabilities through static analysis tools.
These methods typically assign a score based on the number of
detected vulnerabilities, without considering execution behavior.

Conversely, dynamic metrics focus on runtime vulnerabilities,
identifying security issues that manifest during execution. Despite
advancements in vulnerability detection across various system com-
ponents (e.g., authentication flaws, SQL injection attacks), scoring
mechanisms often rely solely on the count of detected vulnerabili-
ties. The severity of each vulnerability is typically not accounted
for by default and is instead treated as a tunable parameter.

Key limitations of the current practice include:

• Fragmentation: The assurance process is not unified. Tools
operate independently, and their results are difficult to com-
bine and analyze comprehensively.

• Technical Expertise Requirements: Most tools produce out-
puts that are inaccessible to non-technical users, creating a
barrier for wider adoption.

• Impact Quantification: There is no consistentmetric for quan-
tifying the impact of potential failures or vulnerabilities,
making it difficult for users to prioritize or choose the best
solutions.

• Requirement Completeness: Exhaustive requirement gener-
ation for formal verification is challenging, often leading to
incomplete or insufficient models.

• Cross-Module Analysis: Current methods fail to account for
how a vulnerability detected in one part of the system might
affect other parts, limiting their ability to assess system-wide
impacts.

• Work with older IDS systems: We need to use defence mecha-
nismswhichwill not make current IDS systems providemore
false positives. This may need a channel of communication
with current IDS systems.

• Software quality metric accumulation: the effects of a vulner-
ability count alone, often neglecting the contextual severity
and potential impact of each detected issue.

2.3 What is new in your approach, and why do
you think it will be successful?

Our approach is innovative and comprehensive, aiming to unify
digital assurance methods into a single, modular framework that:

• Integrates Modules: By combining verification, vulnerabil-
ity detection, live monitoring, and defensive mechanisms
into a cohesive pipeline, we ensure that each step informs
the others, improving overall system assurance. For exam-
ple, vulnerability analysis results can directly inform live
monitoring strategies or model-checking requirements.

• Simplifies Outputs: We will leverage large language models
(LLMs) to aggregate and summarize highly technical outputs
into accessible formats for non-technical stakeholders. This
will enable decision-makers to interpret results and act on
them without relying on technical intermediaries.

• Quantifies Risk and Impact: We will introduce a combined
metric for evaluating system quality and the impact of po-
tential failures or vulnerabilities. This will help users make
informed decisions about alternative software options.

• Uses Advanced Techniques: Our framework will incorpo-
rate cutting-edge methods such as Graph Neural Networks
(GNNs): Applied to abstract syntax trees and execution paths,
these will enhance vulnerability detection accuracy. Natu-
ral Language Processing (NLP): Used to translate informal
requirements into mathematical representations for model
checking, addressing the challenge of exhaustive require-
ment generation.

• Provides Flexibility and Generalization: The framework is
modular and extensible, allowing additional tools or tech-
niques to be integrated as needed. This ensures adaptability
to new challenges and technologies.

• Cross-Module Impact Analysis: By linking the results from
one module to others, our framework will provide a more
holistic view of system health and the potential cascading
effects of vulnerabilities.

For grading a software we will use this plan of action:



Digital Assurance for Embedded Space Controllers Conference’17, July 2017, Washington, DC, USA

• Scoring Individual Vulnerabilities: Each detected vulnerabil-
ity is assigned a severity score using a standardized metric
like the Common Vulnerability Scoring System (CVSS) or
a custom scale. The overall risk score is calculated by sum-
ming the severity scores of all vulnerabilities, each weighted
by its importance. The weight accounts for factors such as
exploitability and impact.

• Aggregating Across Subdomains: Since different security
subdomains, such as authentication and access control, have
varying importance, their scores are combined using aweighted
geometric mean rather than a simple average. This approach
ensures that a highly vulnerable subdomain has a dispro-
portionately large effect on the overall security score. Each
subdomain’s contribution is adjusted based on its relative
importance.

• Final Score Interpretation: The aggregated security score
is then normalized to a scale from 0 to 100, where higher
scores indicate better security. Specific thresholds categorize
security levels as excellent, acceptable, or poor.

We believe this approach will succeed because it addresses the
core limitations of current methods while leveraging advancements
in AI, machine learning, and software analysis to provide actionable,
interpretable, and comprehensive assurance.

2.4 Who cares? If you are successful, what
difference will it make?

The proposed framework is crucial for organizations and indus-
tries where system failures can have catastrophic consequences,
including:

• Critical Infrastructure: Operators of power grids, nuclear
plants, and transportation networks can rely on our frame-
work to ensure uninterrupted services and mitigate risks of
cyberattacks.

• Space: High-assurance systems are critical for mission suc-
cess and the safety of personnel and equipment.

If successful, our framework will:
• Reduce the likelihood of system failures and cyberattacks.
• Enable faster and more informed decision-making by pro-
viding interpretable assurance metrics.

• Lower the barrier to adopting advanced assurance tech-
niques by eliminating the need for extensive technical ex-
pertise.

• Improve trust in software systems across high-stakes indus-
tries.

2.5 What are the risks?
• Complexity of Integration: Combining diverse modules (e.g.,
model checking, live monitoring, vulnerability analysis) into
a unified framework may pose technical and logistical chal-
lenges.

• Scalability: Ensuring that the framework works efficiently
across systems of varying sizes and complexities could be
challenging.

• Accuracy and Reliability of Metrics: Developing meaning-
ful and universally applicable metrics for quality and risk

assessment may require significant experimentation and re-
finement.

• Interpretability of AI Models: While LLMs and GNNs hold
promise, ensuring their outputs are both accurate and inter-
pretable may be difficult.

• Adaptability: As software systems and attackmethods evolve,
the frameworkmust remain flexible and up-to-date to remain
effective.

2.6 What are the mid-term and final “exams” to
check for success?

Mid-term goals:
• Development of a prototype framework that integratesmodel
checking, vulnerability analysis, live monitoring, and defen-
sive mechanisms.

• Validation of the framework on benchmark systems with
documented vulnerabilities and assurance requirements.

• Demonstration of LLM-generated reports that non-technical
users can interpret.

Final goals:
• Deployment and testing of the framework in real-world sys-
tems across multiple domains (e.g., healthcare, finance, criti-
cal infrastructure).

• Successful generation of risk and impact metrics that align
with industry standards and user expectations.

• Evidence of reduced system vulnerabilities, improved decision-
making, and enhanced trust in high-consequence systems.

2.7 How long with this project take?
The duration of this project will be three years.

2.8 How much will it cost?
The estimated budget for this project is 200𝑘 per year. This will be
used for student and faculty salary.


	1 500 words Summary
	2 notes
	2.1 What are you trying to do?
	2.2 How is it done today, and what are the limits of current practice?
	2.3 What is new in your approach, and why do you think it will be successful?
	2.4 Who cares? If you are successful, what difference will it make?
	2.5 What are the risks?
	2.6 What are the mid-term and final “exams” to check for success?
	2.7 How long with this project take?
	2.8 How much will it cost?


